UDC 547,859.2 753.07

Yu. A. Azev and I. I. Mudretsova

We found that fervenulin 4-oxide (I) reacts with α -methylindole (IIb) on heating in a 96% aqueous alcohol for 15-20 min in the presence of hydrochloric acid with the formation of 1,2,3,4-tetrahydro-1,3-dimethyl-5-nitroso-6-(2-methylindolyl-3-methylidene)hydrazinopyrimidine-2,4-dione (III). Compound III can be obtained in a free state in a yield of 65-70% by brief heating of the hydrochloride obtained in water, red crystals, mp 190-192°C (from DMFA). PMR spectrum (DMSO-D₆): 2.45 (s, CH₃), 3.12 (s, CH₃), 3.32 (s, CH₃), 6.90-8.10 (m, CH arom.), 8.65 ppm (s, CH). IR spectrum (in mineral oil): 1675, 1685, 1735 (CO), 3246 cm⁻¹ (NH).

Besides the formation of III, a splitting of fervenulin 4-oxide to the known nitrosohydrazine IV takes place in the course of the reaction.

The presence of compound IV in the reaction mixture was confirmed by isolation of 3-pnitrophenylfervenulin (V) described in [1], in a yield of 10-15%, as the result of treatment of the mother liquid, obtained after the separation of compound III, with p-nitrobenzaldehyde. In the case of indole, no formation of a compound of type III was observed. In this case, compound V was obtained in a 70-75% yield.

In the reaction of N-oxide I with compounds IIa, b in the absence of acid, the splitting of the triazine ring does take place. Thus, it was found that, as a result of heating, fervenulin 4-oxide with indoles IIa,b in boiling butanol for 2 h, it is reduced to fervenulin (VI) in a yield of 50-55%. All the compounds obtained gave satisfactory results for elemental analysis.

The above-described transformations open previously unknown paths of synthesis of fervenulin derivatives from fervenulin 4-oxide. Fervenulin 4-oxide is thus activated by a mineral acid instead of the customary activation of N-heterocyclic N-oxides by acylating agents.

LITERATURE CITED

G. Blankenhorn and W. Pfleiderer, Chem. Ber., 105, 3334 (1972). 1.

S. M. Kirov Ural' Polytechnical Institute, Sverdlovsk 620002. Translated from Khimiya Geterotsilicheskikh Soedinenii, No. 7, pp. 998-999, July, 1985. Original article submitted December 10, 1984.